Turbulent Boundary-Layer Development Around a Square- Sectioned U-Bend: Measurements and Computation

نویسندگان

  • B. E. Launder
  • P. A. Loizou
  • H. H. Zhao
چکیده

A computational and experimental study is reported of turbulent flow around a square-sectioned U-bend with a mean bend radius equal to 3.375 times the hydraulic diameter (DH): the duct Reynolds number is 58,000. The bend geometry is the same as that for which Chang et al. (1983) have reported extensive LDA data except that in the latter experiment the bend was preceded by some thirty hydraulic diameters of straight ducting (thus the boundary layers filled the duct). In the present case, with the inlet section shortened to only 6 DH, the boundary layer thickness at inlet to the bend was only about 0.15 DH. Despite the thinner boundary layers a strong secondary flow is generated which, by 135 ° around the bend, appears to have broken down into a chaotic pattern. Computations of the flow using a three-dimensional finite-volume solver employing an algebraic second-moment (ASM) turbulence model are in generally close agreement with the experimental data and suggest that the secondary flow, in fact, breaks down into a system of five eddies on either side of the mid-plane, in place of the classical single vortex structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

The Effect of Square Splittered and Unsplittered Rods in Flat Plate Heat Transfer Enhancement

A square splittered and unsplittered rod is placed in a turbulent boundary layer developed over a flat plate. The effect of the resulting disturbances on the local heat transfer coefficient is then studied. In both cases the square rod modifies the flow structure inside the boundary layer. As a result, a stagnation point, a jet and wake area are generated around the square rod, each making a co...

متن کامل

Experimental Investigations of Supersonic Flow around a Long Axisymmetric Body

A series of supersonic wind tunnel tests on an ogive-cylinder body were performed to investigate the pressure distribution, the boundary layer profiles, and the flow visualization at various angles of attack. All tests were conducted in the trisonic wind tunnel of the Imam Hossein University. The theoretical shock angle at different model positions compared well with those we obtained via Schi...

متن کامل

Experimental Investigations of Supersonic Flow around a Long Axisymmetric Body

A series of supersonic wind tunnel tests on an ogive-cylinder body were performed to investigate the pressure distribution, the boundary layer profiles, and the flow visualization at various angles of attack. All tests were conducted in the trisonic wind tunnel of the Imam Hossein University. The theoretical shock angle at different model positions compared well with those we obtained via Schi...

متن کامل

Numerical computation of turbulent gas-particle flow in a 90 degree bend: comparison of two particle modelling approaches

A numerical study into the physical characteristics of dilute gasparticle flows over a square-sectioned 90◦ bend is reported. Two approaches, namely the Lagrangian particle tracking model and Eulerian two fluid model are employed to predict the gas-particle flows. Renormalization Group based kmodel is used as the turbulent closure for both the approaches; however, for the Eulerian model, additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007